Charges and Potentials at the Nerve Surface

نویسنده

  • Bertil Hille
چکیده

The voltage dependence of the voltage clamp responses of myelinated nerve fibers depends on the concentration of divalent cations and of hydrogen ions in the bathing medium. In general, increases of the [Ca], [Ni], or [H] increase the depolarization needed to elicit a given response of the nerve. An e-fold increase of the [Ca] produces the following shifts of the voltage dependence of the parameters in the Hodgkin-Huxley model: m(infinity), 8.7 mv; h(infinity), 6.5 mv; tau(n), 0.0 mv. The same increase of the [H], if done below pH 5.5, produces the following shifts: m(infinity), 13.5 mv; h(infinity), 13.5 mv; tau(n), 13.5 mv; and if done above pH 5.5: m(infinity), 1.3 mv; h(infinity), 1.3 mv; tau(n), 4.0 mv. The voltage shifts are proportional to the logarithm of the concentration of the divalent ions and of the hydrogen ion. The observed voltage shifts are interpreted as evidence for negative fixed charges near the sodium and potassium channels. The charged groups are assumed to comprise several types, of varying affinity for divalent and hydrogen ions. The charges near the sodium channels differ from those near the potassium channels. As the pH is lowered below pH 6, the maximum sodium conductance decreases quickly and reversibly in a manner that suggests that the protonation of an acidic group with a pK(a) of 5.2 blocks individual sodium channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extraction of Sensory part of Ulnar Nerve Signal Using Blind Source Separation Method

A recorded nerve signal via an electrode is composed of many evokes or action potentials, (originated from individual axons) which may be considered as different initial sources. Recovering these primitive sources in its turn may lead us to the anatomic originations of a nerve signal which will give us outstanding foresights in neural rehabilitations. Accordingly, clinical interests may be r...

متن کامل

Quasi-Static Theory for Uniaxial Chiral Omega Media

The problem of unbounded uniaxial chiral omega media in the presence of both static electric and magnetic point charges is investigated. For this purpose scalar electric and magnetic potentials in these media are introduced. Using these potentials, the corresponding electric and magnetic fields are determined. The similar problem of static electric and magnetic current sources with the goal of ...

متن کامل

Alamethicin channels incorporated into frog node of ranvier: calcium- induced inactivation and membrane surface charges

Alamethicin, a peptide antibiotic, partitions into artificial lipid bilayer membranes and into frog myelinated nerve membranes, inducing a voltage-dependent conductance. Discrete changes in conductance representing single-channel events with multiple open states can be detected in either frog node or lipid bilayer membranes. In 120 mM salt solution, the average conductance of a single channel i...

متن کامل

Electrostatic Potentials at Solid/Liquid Interfaces*

This review deals with electrostatic potentials within solid/electrolyte interfaces. The electrostatic potentials of several planes are defined and discussed: the inner surface potential affecting the state of charged surface species due to interactions with potential determining ions (Ψ0), the potential affecting the state of associated counterions (Ψβ), the potential at the onset of diffuse l...

متن کامل

Variation in median nerve nutritional artery at the distal end of forearm: case report

Background: The median nerve is one of the most important branches of the brachial plexus. Due to the role of the median nerve in sensory and motor innervation of the forearm and hand in the upper limbs, its blood supply is very important. Awareness of variations in the blood supply pattern to this nerve reduces the incidence of necrosis and ischemia of the nerve during surgical and diagnostic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 51  شماره 

صفحات  -

تاریخ انتشار 1968